[This is very significant! N.B. While I am excited by the science, I in no way sympathize with their endorsement of the so-called "Green Revolution." The Green Revolution refers to the development of dwarf high-yielding varieties of crops grown in conjunction with fertilizers and pesticides.]
Net energy of cellulosic ethanol from switchgrass
M. R. Schmer, K. P. Vogel, R. B. Mitchell, and R. K. Perrin
Perennial herbaceous plants such as switchgrass (Panicum virgatum L.) are being evaluated as cellulosic bioenergy crops. Two major concerns have been the net energy efficiency and economic feasibility of switchgrass and similar crops. All previous energy analyses have been based on data from research plots (<5m^2) and estimated inputs. We managed switchgrass as a biomass energy crop in field trials of 3–9 ha (1 ha=10,000m^2) on marginal cropland on 10 farms across a wide precipitation and temperature gradient in the midcontinental U.S. to determine net energy and economic costs based on known farm inputs and harvested yields. In this report, we summarize the agricultural energy input costs, biomass yield, estimated ethanol output, greenhouse gas emissions, and net energy results. Annual biomass yields of established fields averaged 5.2 -11.1 Mg/ha with a resulting average estimated net energy yield (NEY) of 60 GJ/ha/y. Switchgrass produced 540% more renewable than nonrenewable energy consumed. Switchgrass monocultures managed for high yield produced 93% more biomass yield and an equivalent estimated NEY than previous estimates from human-made prairies that received low agricultural inputs. Estimated average greenhouse gas (GHG) emissions from cellulosic ethanol derived from switchgrass were 94% lower than estimated GHG from gasoline. This is a baseline study that represents the genetic material and agronomic technology available for switchgrass production in 2000 and 2001, when the fields were planted. Improved genetics and agronomics may further enhance energy sustainability and biofuel yield of switchgrass.
1 comment:
Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land Use Change
by Timothy Searchinger, Ralph Heimlich, R. A. Houghton, Fengxia Dong, Amani Elobeid, Jacinto Fabiosa, Simla Tokgoz, Dermot Hayes, Tun-Hsiang Yu
Published in "Science"
Most prior studies have found that substituting biofuels for gasoline will reduce greenhouse gases because biofuels sequester carbon through the growth of the feedstock. These analyses have failed to count the carbon emissions that occur as farmers worldwide respond to higher prices and convert forest and grassland to new cropland to replace the grain (or cropland) diverted to biofuels. Using a worldwide agricultural model to estimate emissions from land use change, we found that corn-based ethanol, instead of producing a 20% savings, nearly doubles greenhouse emissions over 30 years and increases greenhouse gases for 167 years. Biofuels from switchgrass, if grown on U.S. corn lands, increase emissions by 50%. This result raises concerns about large biofuel mandates and highlights the value of using waste products.
Post a Comment